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1 Introduction 
NASA’s vision for Earth science is to build a “sensor web”: 
an adaptive array of heterogeneous satellites and other sen- 
sors that will track important events, such as storms, and 
provide real-time infonnation about the state of the Earth 
io a wide variety of customers. Achieviiig this visicn will 
require automation not only in the scheduling of the obser- 
vations but also in the processing of the resulting data. To 
address this need, we are developing a planner-based agent 
to automatically generate and execute data-flow programs to 
produce the requested data products. 

1.1 TOPS Case Study 
As a demonstration of our approach, we are applying our 
agent, called IMAGEbot, to the Terrestrial Observation 
and Prediction System (TOPS, http://www.forestry.umt.- 
edu/ntsg/Projects/TOPS/), an ecological forecasting sys- 
tem that assimilates data from Earth-orbiting satellites and 
ground weather stations to model and forecast conditions 
on the surface, such as soil moisture, vegetation growth and 
plant stress (Nemani,et aZ. 2002). Prospective customers of 
TOPS include scientists, fanners and fire fighters. With such 
a variety of customers and data sources, there is a strong 
need for a flexible mechanism for producing the desired data 
products for the customers, t+ng into account the infor- 
mation needs of the customer, data availability, deadlines, 
resource usage (some scientific models take many hours to 
execute) and constraints based on context (a scientist with a 
palmtop cpinputer in the field has different display require- 
ments than when sitting at a desk). IMAGEbot .provides 
such a mech\anism, accepting goals in the form of descrip- 
tions of the desired data products. 

The goal of the TOPS system is the monitoring and pre- 
diction -of changes in key environmental variables. Early 
warnings of potential changes in these variables, such as soil 
moisture, snow pack, primary production and stream flow, 
could enhance our ability to make better socio-economic de- 
cisions relating to natural resource management and food 
production(Nemani er al. 2000). The accuracy of such ’ 

warnings depends on how well the past, present and future 
conditions of the ecosystem are characterized. 
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The overall data flow through the system.is depicted in 
Figure 1. The inputs needed by TOPS include: 

Fractional Photosynthetically Active Radiation (FPAR) 

Temperatures (minimum, maximum and daylight aver- 

0 Precipitation 
0 Solar Radiation 
0 Humidity 

We have several potential candidate data sources at the be- 
ginning of each model run. The basic properties of the inputs 
are listed in Table 1. Even with this fairly small model, there 
is a good variety of inputs we need to select from, depending 
on our goal. 

In addition to the attributes listed in the table, data sources 
also vary in terms of quality and availability - some in- 
puts are not always available even though they should be. 
For example, both the Terra and Aqua satellites have expe- 
rienced technical difficulties and data dropouts over periods 
ranging from few hours to several weeks. Depending on the 
data source, different processing steps are needed to get the 
data into a common format. We have to convert the point 
data (CPC and Snotel) to grid data, which by itself is fairly 
complex and time-consuming, and we must reproject grid 
data into a common projection, subset the dataset from its 
original spatial extent and populate the input grid used by 
the model. The data are then run through the TOPS model, 
which generates desired outputs. 

What follows is a new step in many Earth.science sys- 
tems: the data are campared against long-term records and 
statistics, and the system determines whether there is some- 
thing-important happening in the covered area. An example 
of such events may include new fires beixig ignited, or rapid 
ice-melt and thus flooding potential. Whatever the “interest- 
ing” event is, the system tries to investigate it further, and 
one way of accomplishing this is by getting a higher resolu- 
tion information and going through the input selection,pro- 
cess again. The goal has now changed, not only in terms of 
detail, but also in geographic extent, because we no longer 
need to run the model over the entire continent, but only over 
several selected areas. Furthermore,’ we would like more de- 
tailed information, so we may actually choose to run a more 
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Table 1: TOPS input data choices 

Figure 1: Data Aow in the TOPS framework 

complex mode1 that runs Icnger, but provides us with higher 
quality information on the ongoing events, together with the 
prognosis for near future. As we can see, when this feed- 
back loop is added to TOPS, the complexity of the system 
go& u p  even fu~her .  TOPS provides only a simple inus- 
tration of the potential problems, and is less complex than 
many other models and systems in the Earth sciences, some 
of which take dozens of different inputs, with sizes reaching 
into terabytes for each model run. 

1.2 Overview 
The architecture of the agent is described in Figure 2. In the 
remainder of the paper, we describe a few of the components 
of this architecture in more detail: 

DPADL Section 2 discusses the .Data Processing Action 
Description Language (DPADL) (Golden 2002), ' which 
is used to provide action descriptions of available pro- 
grams and API calls, as well as descriptions of available 
data sources. DPADL is an expressive, declarative lan- 
guage with Java-like syntax, which aliows for a rb i t rq  
constraints and embedded Java code: Planning problems 
are also described in DPADL. 

Planner Section 3 discusses the planner, which accepts 
goals in the fonn of data descriptions and synthesizes 
data-flow programs using the action descriptions read in 
by the DPADL parser, consistent with information stored 
in the database (i.e., the initial state). It reduces the plan- 
ning problem to a constraint satisfaction problem whose 
solution provides a solution to the original planning prob- 
lem. 

Constraint Network Section 4 discusses the constraint 
solver, which can handle numeric and symbolic con- 
straints, as well as constraints over strings and even ar- 
bitrary Java objects. The latter are evaluated by executing 
the code embedded in constraint definitions, specified in 
the DPADL input file. Additionally, it can solve a lim- 
ited class of universally quantified constraints (Golden & 
Frank 2002). 

JDAF TOPS provides a collection of data-processing pro- 
grams and scientific models for ecosystem forecast- 
ing, supporting a common API, in a framework called 
JDAF. There are two ways that the agent interacts with 
TOPS: the execution of pl&s and the evaluation of con- 
straints. Certain constraints, specified procedurally using 
the DPADL language, are evaluated by making remote 
method calls to TOPS. This provides a fined-grained inte- 
g&on hetween the planner G d  TOPS,-wliichis needed 
for the planner to compute the appropriate parameter val- 
ues for TOPS API calls. 

2 DPADL Language 
In the course of developing IMAGEbot, we found that exist- 
ing action representation languages were inadequate for de- 
scribing data processing domains. To address these deficien- 
cies, we developed a new language called DPADL, for Data 
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Figure 2: The agent architecture 
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Processing Action Description Language. DPADL provides 
features tailored for data processing domains, such as: 

First-class objects: Most things in the world and in soft- 
ware environments can be viewed as objects with cer- 
tain attributes and reiations to other objects. For exam- 
ple, a file has a name, host, parent directory, owner, etc. 
Even more importantly, data files often have complex data 
structures. The language should provide the vocabulary 
for describing these structures. DPADL is an object- 
oriented language, with a syntax based on Java and C++. 
Functions:. We have found that the vast majority of pred- 
icates in data-processing domains are functions. The lan- 
guage should allow functions to be described as functions, 
rather than shoehorning everything into a relational repre- 
sentation. DPADL uses a functional representation. Rela- 
tions are represented as functions returning boolean. 
Constraints: Determining the appropriate. parameters for 
an action can be challenging. Parameter values can de- 
pend on other actions or objects in the plan. The lan- 
guage should provide the ability to specify such con- 
straints where they are needed. DPADL supports built- 
in and user-defined constraints over any type, including 
strings and Java objects, and universally quantified con- 
straints over sets. 
Integration with a run-time environment: It is not suffi- 
cient to generate plans; it is necessary to execute them, 
so there must be a way to describe how to execute the 
operations provided by the environment and obtain in- 
formation from the environment. The language should 
allow the specification of "hooks" into the runtime envi- 
ronment, both to obtain information and to initiate opera- 
tions: DPADL provides these hooks by permitting embed- 
ded Java code for defining new constraints and speclfying 
how to execute actions. Variables used in planning and 
constraint reasoning can reference Java objects as well as 
primitives such as integers and strings, so fine-grained in- 
teraction with the Java runtime environment is possible. 

e Metadata: The inputs and outputs in a data-processing do- 
main are data files, which contain information about the 
world, usually at some time in the past. For example, pix- 
els in a satellite image correspond to physical measure- 
ments of regions of the Earth at whatever time the image 

was cap:ured. The lazgnage s h d d  be expressive emfigh 
to describe how the contents of existing or requested data 
relate to the past state of the world. In DPADL, a data 
product is described as a mapping from the state of the 
world to the contents of the data. 

e Object creation and copying: iMany programs create new 
objects, such as files, sometimes by copying or modifying 
other objects. The language must provide a way of de- 
scribing such operations. DPADL allows effects to create 
new objects, which optionally may be declared as copies 
of existing objects, in which case it is only necessary to 
list the ways in which the objects differ; all other attributes 
zre inhe~ced frem the preexistkg object. 
Operations on large or infinite sets: Many programs act on 
all members of some set. For example, a backup operation 
acts on all files on a disk and an image processing opera- 
tion may affect all pixels in an image, in a specified region 
of an image, or matching a specified criterion. The lan- 
guage should support universal quantification to describe 

goals and effects, even when the sets quantified over are 
infinite. 

such qjera:ions, DPADL pr=yi&s Un?,rerS-lI -$ r nnantifiprl c1 ll..-AAA _- 

3 Planning in the Large 
Data processing has traditionally been automated by writ- 
ing shell scripts. There are some situations when scripts are 
the best approach: namely, when the same procedure is to 
be applied repeatedly on different inputs, the environment 
is fa i ib  stable and there are few choices to be made. How- 
ever, in many applications, including TOPS, none of these 
assumptions holds. There are many different data products 
we would like the system to produce, there are many inputs 
and data-processing operations to choose from in produc- 
ing those products, and the availability of these inputs can 
change over time. Additionally, the domain lends itself to 
planner-based automation; it has precisely characterized in- 
puts and outputs and operations whose effects can also be 
precisely Characterized. However, there are significant dif- 
ferences between Earth Science data processing and more 
traditional planning domains, which calls for different tech- 
niques. Notable features of data processing domains include 
large dynamic universes, large plans, incomplete informa- 
tion and uncertainty. 

3.1 Decisions, decisions 
As we discussed in Section 1.1, we have a number of in- 
puts to choose from, which are applicable under different 
circumstances. The data may come from-several satellites, 
ground stations, or as outputs from other models, forecasts 
and simulations. 

In addition to input choices, we also have several choices 
of models to use with the data. As with the data, the mod- 
els produce results of various quality, resolution, and ge- 
ographic extent. Moreover, there may sometimes be sig- 
nificant trade-offs in performance versus precision. An 
FPAWLAI algorithm provides a good example of this trade- 
off. We can produce an FPAWLAI pixel using either a 
lookup table, or a radiative transfer method (Knyazikhin et 



Figure 3 The IiMAGEbot development environment, run- 
ning as a ]Edit plugin 

al. 1999). In the case of a lookup table, we derive a Normal- 
ized Difference Vegetation Index (NDVI) from two surface 
reflectance channels by a means of a simple equation, and 
tkar, use the NDVI value together with its Iaiidcovei vdue 
as a key into a static lookup table that will give us the FPAR 
and LA1 values. The complexity of this algorithm is O(1). 
On the other hand, we can use the radiative transfer method, 
which contains a large number of intermediate computations 
and has complexity O(n1ogn). This fact, together with the 
number of runs we may attempt, translates into a substan- 
t id  &ffeience ia user tiae, a id  while the radiative transfer 
method provides us with good results, it is not suitable for 
more interactive or first-pass applications, where the lookup 
table is sufficient. In these first-pass applications, we are 
looking for large abnormalities and deviations from long 
tern normals, so high precision runs do not necessarily pro- 
vide us with better results. 

Another reason for using different models at different 
times is their possible regional character. Some models are 
highly specialized and provide very good and precise results 
in only certain parts of the world. This is partially due to 
the fact that the scientists who develop these models have a 
great deal of knowledge about specific geographic area (Pa- 
cific Northwest, the Amazons, etc.). They have collected 
large amounts of local data over the years, and were able to 
develop models whose outputs are highly accurate in these 
regions. We usually don't want to use these models when 
we are concemed,with global monitoring, but they are use- 
ful when we have identified an important event occumng at 
the region where we have a very accurate regional model. 

3.2 Large dynamic universes 
In less than ten years, the tide in the planning community 
has shifted from lifted action representations to ground rep- 
resentations, thanks largely to the success of planners like 
Graphplan (Blum & Furst 1997) and HSP (Bonet & Geffner 
2001) and to the benchmark planning domains made possi- 
ble by the International Planning Competition. The-simple 
fact is that, at least for these benchmark domains, planners 
that use ground actions are faster. There has been recent 

progress (Younes & Simmons i99Sj in  appiying some of 
the lessons learned from these p!an?ers to speed up planners 
that use lifted actions, but today the fastest planners all use 
ground actions. 

However, there are planning problems for which it is not 
possible to use ground actions, for example, when not all 
members of the universe are known at planning time. This 
is trivially true in information integration domains, such as 
(Knoblock 1996) and (Etzioni 1996), where the job of the 
planner is to construct a plan to consult multiple informa- 
tion sources, .such as databases or websites, in order to an- 
swer a query. In such domains, virtually no members of the 
universe may be known to the planner at the time of plan 
generation. 

In data processing domains, too, it is impossible to iden- 
tify in advance all objects in the universe. Furthermore, most 
actions create new objects, so the universe is not even static. 
Browsing through the planning problems from the Third In- 
ternational Planning Competition (IPC3) reveals that even 
the hard problems typically have fewer than 100 objects to- 
tal. In contrast, if we consider a single product from a single 
instrument (MODIS) on a single satellite (say, Terra) for a 
single day, there are 255 tiles. TCJ proCuce a given data p r d -  
uct, we may need to consider multiple products from multi- 
ple instruments, residing on multiple satellites, and multiple 
days' worth of data. 

Even worse, files are not the smallest unit of granular- 
ity; they have sub-structure. For example, image-processing 
actions act on pixels in the image - either all pixels or a 
subset determined by some selection criteria. It can be very 
useful to describe operations at the pixel level -in fact, we 
do so in our own domain encodings - but doing so makes 
a ground representation unthnkable. A single MODIS tile 
contains over one million pixels. Additionally, many actions 
take numeric and string arguments. Appropriate values for 
these arguments may be determined through constraint rea- 
soning, but there is no way to list all possible values apriori. 

Although we cannot use a grounded representation, we 
would still llke to benefit from some of the techniques that 
have been developed over the past ten years. As we discuss 
in Section 3.5, we adopt a lifted variant of a relaxed plan- 
graph analysis, combined with a constraint-based search. 

3.3 Large plans 
The purpose of data reduction is to convert large amounts of 
data into small amounts of mformation; consequently, a typ- 
ical data-flow plan has a large number of inputs and a small 
number of outputs. Data are aggregated spatially (mosaics) 
a d  temporally (mean, max, trend a d y s i s ,  - ~ m a t i o n s ,  etc), 
and different data sources are fused. The plan to produce a 
single output may contain hundreds or thousands of actions. 

While plans can grow very large, complexity need not 
grow accordingly. Whereas traditional benchmark problems 
involve a lot of interactions, making the difficulty of plan- 
ning exponential in the size of the plans produced, data- 
processing domains are "embarrassingly parallel." Except 
for competition for resources such as memory and CPU, the 
processing required for one mosaic tile does not interfere 
with the processing for another tile. Indeed, even operations 



on individual pixeis tend to be independent of operations on 
adjacent pixels. This pxallelism is manifest in the structure 
of the data-flow plans, which tend to be shallow but bushy, 
with many instances of the same actions operating on dif- 
ferent inputs. Even though actions do not directly interfere 
with each other, there may be constraints between parame- 
ter values that arise when planning with a lifted representa- 
tion. However, the CSPs corresponding to these parameter 
dependencies tend to be tree-structured, meaning they can be 
solved with no backtracking (Freuder 1982). Thus, it should 
be possible to generate “embarrassingly parallel” plans in 
time that is roughly linear in the size of the plan. 

In fict, we =e aiming at plmning ticles that are sub-!inear 
in plan size in some cases, by generating plans with simple 
loops that iterate over, say, all tiles matching a given set of 
criteria. To facilitate the detection of independence among 
actions and subgoals, we label certain types as “static,” 
meaning they can be created but never modified. Detect- 
ingindependence among actions that produce only static ob- 
jects is trivial - unless one directly or indirectly supports 
the other, they are independent. 

3.4 Incomplete information and uncertainty 
There has been considerable work in planning under incom- 
plete information and uncertainty. However, it is worthwhile 
to compare and contrast data processing domains with other 
domains that involve incomplete information. 

In classical planning domains that involve uncertainty and 
sensing, such BS the infmmus bonb-in-the-toilet domain, all 
possible worlds are explicitly enumerated, which facilitates 
the case analysis necessary to solve these problems. Enu- 
merating all possible worlds is infeasible in data processing 
domains, or any software domains for that matter. As we 
discussed in Section 3.2, one world is really too large to ex- 
plicitly represent; all possible worlds is out of the question. 
In fact, the number of possible worlds is infinite. We adopt 
the Local Closed-World (LCW) reasoning introduced in (Et- 
zioni, Golden, & Weld 1997) to efficiently reason about in- 
complete information in the face of very large universes. 
In IMAGEbot, we deal with three different kinds of uncer- 
tainty, and each is handled differently: 

Unknown information that must be known by the agent 
in order to complete the plan: For example, the infor- 
mation may be used to provide t5e value of a variable, 
or select among alternative actions. Thls information is 
sensed, not through explicit sensing actions but through 
the evaluation of constraints, which in turn causes code to 
be executed to obtain the correct values. For example, if 
we want to know the mosaic tiles providing a given mea- 
surement for a particular region, we can evaluate the con- 
straint associated with the relation tiZe.covers(Zon, Zat) for 
specified intervals of lon and lat or tiZe.inRegion(region) 
for a specified named region. That, in turn, causes the 
Java method getTiles to be called, which connects to the 
TOPS sever to obtain the appropriate set of tiles. This 
approach cannot handle sensing actions with precondi- 
tions, because the constraints are always applicable, lim- 
ited only by knowledge of the relevant variable domains. 

Zln the other hand, it affords great versatility in the EUI- 

ner in which infom-ation is gathered. 
Unknown information that need not be known by the 
agent in order to complete the plan: For example, if the 
user requests a file that contains gridded evening iempera- 
ture values for Montana at 8 !an resolution, and the agent 
has gridded temperatures for the western US at 1 km res- 
o!ution, it need only select the appropriate subset of the 
data and reduce the resolution. Even though the agent 
never knows what the actual temperature values are, it 
can be confident that the file it returns to the user con- 
tains the requested information. In this sense, it is anal- 
ogoils to conforinzit plziining, i.e., pro&xir,g a plan that 
is guaranteed to work in any possible state of the world, 
without knowing the actual state. In fact, the metadata 
reasoning that the planner employs is similar to the case 
analysis employed by confonmdcontingent planners. In 
order to represent that a data file contains specific infor- 
mation, such as temperatures, we rely on metadata formu- 
!as (Golder? 2000), first-order descriptions of infohation 
sources that describe data contents in terms of the infor- 
mation about the world contained in the data. 
Uncertainty in how well the values stored in the data files 
represent the variables they are supposed to represent: Al- 
though it is tempting to represent these uncertainties in 
terms of probability distributions, the probabilities are un- 
known, even to the scientists who are experts in the field. 
Instead, we-represent these uncertainties in an ad hoc 
manner, in terms of “data quality.” A priori quality values 
can be assigned to data from different sources, modified 
by informtion known about specific data files. For ex- 
ample, satellite data have quality assurance flags, report- 
ing problems such as cloud cover, “dead detectors,” and 
values that are outside the expected bounds. Addition- 
ally, various processing operations can affect data quality, 
which we can express in terms of a mathematical relation- 
ship between the quality of the input and the quality of the 
output. 

3.5 Planning approach 
Space limits preclude a detailed description of the planning 
algorithm, but it is roughly a two-stage process. The first 
stage consists of a Graphplan-style reachability analysis, 
(Blum & Furst 1997) used to derive heuristic distance esti- 
mates for the second stage. The second stage is a constraint- 
based search, which is discussed in Section 4. The primary 
differences from Graphplan are: 

Action nodes in the graph are lifted, and each node may 
represent a set of actions of a given type. For example, in 
a given layer of the graph, there might be a single node 
corresponding to the action schema “compress@Ze),” for 
a thousand different instances offile. Nodes may be split 
when doing so would improve the reachability analysis, 
and they may, in some cases, be grounded, but i’n general 
there is not a one-to-one correspondence between nodes 
in the graph and actions in the final plan. 
There is no explicit proposition layer. Arcs go directly 
from nodes to nodes and are labeled with either individ- 



ual conditions or with input-output bindings, meaning the 
input of the consumer is provided by the output of the pro- 
ducer. An input-output arc supports all precondtions of 
the consumer that depend on the specified input. 

0 The initial graph construction is backward from the goal, 
to avoid adding irrelevant actions. Afterward, variable 
bindings are propagated forward from the initial state, and 
unreachable nodes are eliminated. 
There are no mutexes. Computing mutexes for a lifted 
plan graph would be difficult and, since negative interac- 
tions are rare in data-processing domains, of little value. 

After the graph is constmcted, heuristic distance estimates 
for guiding the search are computed, and a constraint net- 
work representing the search space is incrementally built. 
Since the nodes in the graph represent multiple actions, these 
need to be copied (lazily), to avoid forcing multiple condi- 
tions to be supported by the same action. Note that, in du- 
plicating the nodes, we are not forcing the conditions to be 
s ~ ~ p o r t e d  by d<Sf.~e.? zctions. We take a lest-commitxent 
approach to whether two action variables in the plan des- 
ignate the same or different action. If two action variables 
must codesignate (or non-codesignate), this will be discov- 
ered by constraint reasoning. The constraint network con- 
tains: 

1 .  Boolean variables for all arcs, nodes and conditions. A 
“true” value for an arc or a node means that element is 
part of the plan. A “true” value for a condition means the 
condition is true. 

2. Variables for all parameters, input and output variables 
and function values. 
For every condition in the graph, a constraint specifying 
when that condition holds. For conjunctive and disjunc- 
tive expressions, the constraint is the respective conjunc- 
tion or disjunction of the boolean variables corresponding 
to appropriate sub-expressions. For equalities, inequal- 
ities, and all user-specified constraints, the constraint is 
the corresponding equality, inequality, etc. For fluents, no 
constraint is given, since the truth values of fluents are 
determined by the arcs that support them. 
For every arc in the graph, constraints specifying the 
conditions under whch the supported fluents will be 
achieved. These constraints consist of equality constraints 
between variables in the producer and consumer and pre- 
conditions that must be true before the producer action is 
executed. 

4 Constraint reasoning 
Constraints appear at all levels in data-processing domains. 
0 At the problem level, we have constraints on time and re- 

source consumption. For example, one of the goals of the 
TOPS system is to perform the complete processing and 
analysis of data for a particular day no later than 8am the 
following day. If we have an algorithm that runs for 10 
hours and we know that the last data for the current day 
w d  be arriving around midnight, we cannot accomplish 
the goal and we should consider another algorithm. 

0 At the file level, we can have constraints on size, qual- 
ity, etc. For example, we a a y  not want to piocess 5les 
that cover regions with clouds over more than 80% of the 
area. In this case, we may have to use a different, and less 
cloudy, source of data. 

0 At the pixel level, constraints may specify subsets of one 
or more datasets. For example, we may want to process 
data only for a certain country or region, or we may want 
to run an algorithm only during certain time periods. We 
may want to run the algorithm only on pixels of certain 
underlying type. For example, only for broad-leaf forests. 
Finally, during validation, we often compare satellite data 
with ground measurements, and we are only interested in 
specific points on the ground where we have validation 
measurements. 

In order to deal with the many constraints that arise in a 
plan, we reformulate the planning problem as constraint sat- 
isfaction problem (CSP), an approach that has been inves- 
tigated by researchers in an attempt to use advanced con- 
straint solving algorithms to find plans more efficiently. In 
our system, we use constraint reasoning primarily for its ex- 
pressive power rather than its efficiency After the planner 
constructs a constraint network corresponding to the desired 
search space, we search the constraint network for a solu- 
tion, which corresponds to a solution to the original planning 
problem. 

A constraint network is a representation and reasoning 
framework consisting of a finite set of variables, a corre- 
sponding set of domains containing the values the variables 
may take, and a set of constraints. Each constraint is defined 
on a subset of the variables and limits the values those vari- 
ables in can take simultaneously. An assignment of values 
to.all variables that does not violate any constraints is a so- 
lution. The central reasoning task (or the task of solving a 
CSP) is to find one or more solutions. 

Many algorithms and systems have been developed for 
,solving constraint problems, ranging from simple back- 
tracking search algorithms to sophisticated hybrid methods. 
However, constraint networks with infinite domains repre- 
sent new challenges. In terms of representation, constraints 
can no longer be represented extensionally as relational ta- 
bles. It is impossible to store in a computer a relation with 
infinite entries. From a reasoning point of view, the conven- 
tional search algorithms and consistency techniques cannot 
be applied directly. There is no way to enumerate values in 
an infinite domain exhaustively. It is unknown to us whether 
there -~~ is a general framework available to represent and to 
solve infinite constraints problems. 

As discussed in Section 3, planner variables, even univer- 
sally quantified variables, can have infinite domains. Since 
these variables can appear in constraints, we have imple- 
mented a constraint network component capable of solving 
a class of constraint problems with intinite domains, that is, 
universally quantified constraints obtained from subgoals of 
the planner(Go1den & Frank 2002). Each variable is asso- 
ciated with a domain. A variable domain can be finite or 
infinite, in which case it is represented as an interval (for nu- 
meric type variables), a regular expression (for string type), 



or symbolic sets (for object type). The use of regular ex- 
pressions to represent string domains, and the support for 
universally quantified constraints are both novel, if some- 
what unorthodox, contributions to constraint reasoning. 

the data translator comes from external XML descriptions of 
the data, and this external description is often the only thing 
needed to integrate a new data stream - no code change is 
required. 

5 Java Distributed Application Framework 6 Conclusions 
(JDAF) 6.1 Related Work 

in order to faciiitare interoperation of the planner with the 
Earth science processing algorithms, as well as general 
extensibility and flexibility of the overall system, we are 
implementing the Java Distributed Application Framework 
(JDAF). Using this framework we are able to easily integrate 
existing algorithms written in several different languages (C, 
C t t ,  Fortran) into a complex application. While the algo- 
rithm integration is an important feature of the system, there .. 
is a provision for another integration, equally important - 
integration of the acquired data needed for the processing. 
There has been an enormous increase in the data volume and 
the number of data sources over the past several years, and 
whiie some data are being dupiicated (for example we can 
obtain FPAIULAI data from MODIS-Terra, MODIS-Aqua, 
AVHRR, or MTSR), they usually come in variety of formats 
ranging from simple binary to HDF-EOS. The different data 
formats often bring another complexity into the system in- 
tegration process, because the system will require new I/O 
modules that can read these new formats. With these facts 
in mind we are building our framework in a way that ac- 
commodates both data and algorithm fusion, so that we can 
add new algorithms and new data streams seamlessly to the 
existing system while minimizing the integration efforts. 

Since most of the Earth science aigorithms are written in 
C or C++, we take advantage of Java Native Interface (JNI) 
facilities provided by the standard Java distribution. There is 
a single point of entry in and out of the native code, and we 
only use the Java interface for. parameter passing between 
the processing algorithm and the rest of the system. This 
leads to a very simple design and a fast and efficient inte- 
gration. On the Java side of the system, we provide a set of 
common API's, which are implemented by each of the active 
objects (data pre-processing objects, processing algorithms, 
data analyzers). This makes it simple to form processing 
pipelines in a flexible manner, by either an application pro- 
grammer, or by the planner. The simplicity of integration, 
flexibility, and fast deployment, make& m4F a good candi- 
date for prototyping of new algorithm processing systems, 
competing with scripting languages like Ped. Even though 
scripts are very suitable for fast prototypes, JDAF adds the 
flexibility a id  the distributed execution component not often 
available in common scripting languages. 

In order to take advantage of new available data streams, 
we use Earth Science Markup Language (ESML), an XML- 
based description language that significantly eases the data 
fusion process, and supports one of our design goals - sep- 
arating of the data from the processing algorithms. The al- 
gorithms obtain their inputs through a data translator that has 
a detailed knowledge about the structure of the data, while 

There has been little work in planner-based automation of 
data processing. Two notable exceptions are Collage (Lan- 

' sky & Philpot 1993) and MVP (Chien ef al. 1997). Both 
of these planners were designed to provide assistance with 
data analysis tasks, in which a human was in the loop, di- 
recting hie planner. In cmtrasi, the data processing in TGPS 
must be entirely automated; there is simply too much data 
for human interaction to be practical. 

Planning for data-processing shares many characteristics 
with planning for infomiation integration and planner-based 
software agents (Golden 1998). The primary difference is 
the need in data-processing plans to reason about informa- 
tion that will never be known to the agent but is nonetheless 
essential to the task at hand - namely, the information con- 
tained in the data files that the agent must process. 

The EnVironmEnt for &-Board Processing (EVE).(Tan- 
ner et al. 2001) is an execution framework for data- 
processing plans to be run'on-board an Earth-orbiting satel- 
lite. Unlike IMAGEbot, EVE provides no planning capabil- 
ities; plans are generated by humans. 

The Amphion system (Stickel ef al. 1994) was designed 
to construct programs consisting of calls to elements of a 
software library. Amphion is supported by a first-order the- 
orem prover. The task of assembling a sequence of image 
processing commands is similar to the task Amphioq, was 
designed to solve. However, the underlying representation 
we use is a subset of first-order logic, enabling the use of less 
powerfid reasoning systems. .The planning problem we ad- 
dress is considerably easier than general program synthesis 
in that action descriptions are not expressive enough to de- 
scribe arbitrary program elements, and the p l z s  themselves 
do not contain loops or conditionals. 

6.2 Ongoing and Future Work 
Multi-criteria optimization As we have discussed, there 
are many decisions to be made, in the inputs to select and 
the processing operations to apply to those inputs. Some 
decisions may be forced by parameters of the goal. If the 
goal calls for global historical data, regional datasetscan be 
eliminated from consideration, as can datasets that have only 
been av@lable recently.. Howeyer, that can still leave. a num- 
ber of choices that all nominally satisfy the goal. That does 
not mean, however, that all of these choices are equivalent. 
Picking one data source over another can result in signifi- 
cant differences in the data product, along a number of di- 
mensions. Which data source should be preferred depends 
on the users' preferences with respect to these dimensions, 
making the best choice a multi-criteria optimization prob- 
lem. Dimensions include: 

the processing component does not have to h o w  anything 
about the source or the format of the data. The knowledge of 

Quality The data can contain both spatial and temporal 
variability in t e r m  of quality. This can for example hap- 



pen when we have data from two differen; sources iiiai 
were talken at s!ight!y different times, with negative ef- 
fects on the data (for example clouds) diminished from 
one observation to the next. 

Timeliness Not all data sources are available in a timely 
fashion, so we often have a choice between poor quality 
data now or better quality data later. If the purpose is mon- 
itoiqg long-tern trends, getting up-te-the-mincte data is 
not important, but if we are interested in urgent real-time 
events, such as storms, we must make do with whatever 
datasets are currently available. 

Resolution There are often multiple spatial and temporal 
resolutions to choose from. In some cases, for example 
global climate models, high resolution is not necessary, 
whereas when the focus is on smaller features, such as 
fires or crops, high resolution is essential. 

Resources High-resolution data sets require more storage 
and bandwidth, and more processing time. Likewise, 
higher-accuracy models are more CPU-intensive. For ex- 
ample we can produce FPAR and LA1 pixels using either 
a lookup table or a radiative transfer method ( K n y a z w n  
et al. 1999). In the case of a lookup table, we derive 
a Normalized Difference Vegetation Index (NDVI) from 
two surface reflectance channels by a means of a simple 
equation, and than use the NDVI value together with its 
landcover value as a key into a static lookup table that will 
give us the FPAR and LA1 values. The complexity of this 
algorithm is O(1). On the other hand, we can use the ra- 
diative transfer method, which contains a large number of 
intermediate computations and has complexity O(rzlogn). 
Which is preferred will depend on whether time or preci- 
sion is more important. 

Multi-criteria optimization is notoriously difficult, since im- 
proving the plan along one dimension typically degrades it 
along another. It is unlikely that any single plan will opti- 
mize all criteria simultaneously. For example, if any single 
dataset were strictly dominated by any other according to 
all criteria that we care about, we would just exclude that 
dataset from consideration from the outset. Instead, we are 
likely to have many candidate plans that are Pareto optimal, 
that is, plans that are impossibIe to improve upon in one di- 
mension without making .them worse in another. Without 
additional information from the user, we have no reason to 
prefer one Pareto optimal plan over another, so we require 
the user to provide a single optimization metric, such as a 
weighted. sum of the individual criteria. 
-To date, we have done little to explore optimization. The 

latest version of DP.4DL allows any numeric expression to 
be used to specify an optimization function. Ths may be too 
expressive, since only exhaustive search of all possible plans 
can guarantee that a given plan is optimal. With experience 
of what kinds of optimization functions are used in practice, 
we will probably restrict this in the future. 
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